Bild- und Punktwolkenauswertung

3D-Punktwolke (links) und 2D-Farbbild (rechts) einer Szene

Bild- und Punktwolkendaten repräsentieren die Umgebung in Form von 2- bzw. 3-dimensionalen Daten. Beispielsweise erzeugen Farbkameras visuelle (für den Menschen sichtbare) 2D-Farbbilder, Wärmebildkameras erfassen thermische Signaturen in der Umgebung und 3D-LiDAR-Sensoren nutzen Laserstrahlen, um ihre Umgebung in Form von 3D-Punktwolken abzutasten.

Für einen Menschen ist es oftmals sehr einfach, aus diesen reichhaltigen Bild- und Punktwolkendaten höherwertige Informationen zu extrahieren und so Mehrwerte zu generieren. Dies ist jedoch sehr zeit- und kostenaufwendig und erfordert Expertenwissen. Wir unterstützen bei der Automatisierung dieser Aufgabe, um so mittelfristig Kosten und wertvolle Zeit der Mitarbeitenden zu sparen sowie innovative Applikationen zu ermöglichen. Beispielsweise nutzen wir 2D-Farbbilder für die automatische Beurteilung der Qualität eines Werkstücks in der Produktion, zeigen Energiepotenziale in Anlagen mittels Wärmebildern auf und detektieren DSGVO-konform Fußgänger in 3D-Punktwolken für optimierte Ampelschaltungen in unseren Städten von Morgen.

Der Fokus unserer Leistungen liegt dabei auf den beiden Anwendungsfeldern Smart Factoryund Smart City.

Unser Leistungsangebot:

  • Potenzial- und Machbarkeitsanalysen zur Integration von Systemen zur automatischen Auswertung von Bild- oder Punktwolkendaten in Ihrem Unternehmen oder Ihrer Stadt
  • Konzeptionierung von Systemen zur Bild- oder Punktwolkenauswertung
  • Implementierung der Algorithmen auf unterschiedlichen Hardware-Plattformen, z.B. Embedded Hardware für Edge Computing
  • Schulung Ihrer Mitarbeitenden zum Thema „KI-basierte optische Inspektion“
  • Mitwirkung als anwendungsorientierter Forschungspartner in Forschungs- und Entwicklungsprojekten im Konsortium mit Fokus auf Bild- und Punktwolkenauswertung

Kernnutzen beispielhafter Applikationen:

  • Smart Factory: Automatisierung von Qualitätsprüfungen in der Produktion
    • Steigerung der Produktqualität
    • Objektivität bei der Prüfung
    • Reduktion von Reklamationen
    • Unterstützung und Entlastung von Mitarbeitenden
Optische Qualitätsinspektion
  • Smart City: Echtzeitfähige Überwachung von Fahrzeugen im Straßenverkehr
    • Fahrzeugzählungen zur Ermittlung des Verkehrsaufkommens
    • Spurgetreue Verkehrsflusserfassung als Basis für intelligente Lichtsignalanlagen
    • Bestimmung der Belegung von Parkplätzen
Echtzeit Fahrzeugzählung

Referenzen / Publikationen:


  • Sprute, Dennis; Westerhold, Tim; Hufen, Florian; Flatt, Holger; Gellert; Florian: DSGVO-konforme Personendetektion in 3D-LiDAR-Daten mittels Deep Learning Verfahren. In: Bildverarbeitung in der Automation (BVAu), Nov 2022
  • Gutknecht-Stöhr, M.; Friesen, A.; Flatt, H.; Habeck, T.; Großehagenbrock, J.: Automatisierte Qualitätskontrolle: Kartoffeln, KI und Roboter. Atp magazin 10/2019, S. 72 ff, 2019
 

Projekt: KI4PED

 

Projekt: KI4LSA

 

Projekt: Bewertung von laser- und bildbasierten Qualitätsinspektionsverfahren

 

Projekt: Bewertung von selbstlernenden optischen Verfahren zur Qualitätskontrolle

 

Projekt: Passantenfrequenzmessung in Echtzeit